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Abstract-The cantilever follower force problem with external damping is extended to a three-parameter
case, including a concentrated mass, a linear elastic spring, and a partial follower force at the free end. As a
result of the study an unexpected, hitherto unrecognized feature of stability/vibration is identified.

Normally, the boundary conditions have great influence on the stability limits. However, it is proved that
there exists a force at which the critical frequency is independent of all three boundary parameters. The
characteristics of this force/frequency combination are discussed in detail, especially in relation to the
corresponding eigenfunctions.

Also a direct study of the onset of flutter as a function of the boundary parameters is included.

INTRODUCTION

During the past two decades the non-conservative (circulatory as classified by Ziegler [1]) stability
problem of a cantilever subjected to a follower force has been the subject of a number of papers,
see Bolotin[2], Herrmann[3] and Leipholz[4]. A study including an end mass is presented by
Pfliiger [5], and the problem with partial follower force has been studied by Petterson [6],
Konig[7], Kordas and Zyczkowski[8], and Herrmann and Bungay[9]. The effect of damping has
been studied by Leipholz[10], Nemat-Nasser, Prasad and Herrmann[11], Bolotin and
Zhinzher[l2], and by Plaut and Infante [l3]. The present paper treats the continuous cantilever,
follower force, externally damped problem with the boundary conditions, given by three
parameters at the free end, corresponding to a concentrated mass, a linear elastic support and a
partial follower force. A thorough consideration of how response depends on the boundary
parameters leads to some additional insight about the follower force problem.

As a result of the study, a higherto unrecognized feature of stability/vibration is identified. This
feature is the existence of a characteristic point of the characteristic curves of instability in the
force/frequency coordinate system, Le. it is proved that there exists a value of force for which the
natural frequency is independent of the concentrated mass, the support stiffness and the follower
angle of the force. Stated in other terms, all characteristic curves corresponding to first and second
natural frequencies intersect at a common force/frequency point Ae, We. The existence of such
points for higher order pairs of eigenfrequencies is also evident.

To understand this feature from a physical point of view it is necessary to study the
corresponding eigenmodes. At Ae, We the eigenmode can be represented as a linear combination
of two well-defined functions. The specific combination is first determined by the path, i.e. by the
value of dw/dA associated with a particular curve. Thus at the common point Ae, We the
eigenmode reflects the value of the boundary parameters.

Solutions in terms of eigenfrequencies and degree of instability as a function of load, together
with initial flutter load as a function of external damping are given for various boundary
parameters. Then the study is concentrated directly on prediction of the onset of flutter and
divergence as a function of the boundary parameters, treating these as continuous variables.

I. INSTABILITY ANALYSIS-FLUTTER AND DIVERGENCE

As shown in Fig. 1, we consider a uniform continuous cantilever of length L, bending stiffness
EI, and mass per unit length pA. At the free end the boundary conditions are given by three
parameters, corresponding to a concentrated mass M, a linear elastic support of stiffness K, and a
force P which follows according to the parameter "1. Viscous external damping per unit mass B is
included.
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Fig. I. Extended follower force problem.

Non-dimensional space ~ and time 7' are defined by

~ = XIL, 7' = tly'(pAL4/(EI».

The differential equation of motion is

y""(~, T) + AY"(~, T) + y(~, T) + (Jy(~, 7') == 0

with the non-dimensional force and damping coefficients defined by

A=PL2/(EI), (J =BL2y'(pAI(EI».

By separation of variables

the time-dependent part of the solution is governed by the equation

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

As shown in the next section the complex constant tP 2 is the eigenvalue of the eigenvalue problem
governed by the separated differential equation of space together with the actual boundary
conditions.

In this section we shall, for the completeness of presentation, answer the question of stability
corresponding to a given q/. A solution to eqn (1.5) in the form

(1.6)

implies stability for a :5 0, and instability for a> 0 with static instability (divergence) for w = 0
and dynamic instability (flutter) for w;6 O. Inserting (1.6) in eqn (1.5), we obtain

(1.7)

Thus instability for {J < 0 follows directly. In the following we therefore assume {J > O.
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Now defining c, d by

c ± id == V[(tJ2 - 4{) =+= i4E],

the physical quantities a, w are given by

(1.8)

and we see that the criterion for instability is

(1.9)

Then eqn (1.8) is solved for c2 giving

(1.10)

(1.11)

from which it follows that we have instability for { < O. What then remains to determine is the
domain of instability for tJ > 0, {> O.

We see from eqn (1.11) that c2 increases monotonically with E2, and thus E2> Ec2 causes
instability. The cricital value Ec2 is determined by c2

- tJ2 == 0, and we thus have instability for

(1.12)

as stated in [10].
Summing up, we conclude that the cases of (a) negative damping, tJ < 0, (b) a negative real

part of the constant cP\ {< 0, and (c) a dominating imaginary part of the constant cP2, (E2
/{ > fJ2)

all correspond to instability.
Only with a zero imaginary part of the constant 4/, is the instability of static type. Onset of

flutter corresponding to point (c) above occur at the frequency

(1.13)

as seen from eqn (1.9) with c2== fJ2.
From eqns (1.8) and (1.9), with E == 0, we find the results corresponding to the important case

of a real cP2• For fJ2 < 4{

(1.14)

i.e. the stable motion of damped harmonic vibrations. For fJ2 ~ 4(

(1.15)

i.e. static divergence for « 0 and static convergence for (> o.

2. THE EIGENVALUE PROBLEM

The separated differential equation of space corresponding to eqn (1.2) is

y""(~) +Ay"(~) - cP2y(~) == 0, cP2== (± iE,

and the boundary conditions according to Fig. 1 are

y(O) == y'(O) == y"(1) == 0,

y"'(l) + (l-1J)Ay'(l) + (ILcfl 2
- K)y(l) == 0,

(2.1)

(2.2)
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with the non-dimensional follower, mass and spring parameters

'1'/, 11 =: M/(pAL), K =: KV/(EI).

Then the general solution to eqn (2.1) is

y«() =: C1 cosh (a~) +C2 sinh (a~) +C3 cos (b~) +C4 sin (b~),

and by inserting this in eqn (2.1) we find

(2.3)

(2.4)

(2.5)

Using the boundary conditions we obtain, for fixed parameters '1'/, 11 and K the condition for a
non-trivial solution as

(2.6)

where

and

/1 (>..,4» =: /1(a, b) =: 1+ cosh (a) cos (b),

MA, q,) =: Ma, b) =: b2
- a 2 +ab sinh (a) sin (b),

b2 +a2

/3(A, q,) =: /J(a, b) = ----ab (b sinh (a) cos (b) - a cosh (a) sin (b».

Alternatively to this traditional form, the functions /1, /2, /3, may be expressed as

/I(A, q,) = 1+~ (cos (g) +cos (g»,

MA, q,) =A+ i~ (cos (g) - cos (g»q"

/J(A,q,) =: i(g sin (g)- g sin (g»h/q"

where the complex quantities h, g, g are given by

h =!(a 2 +b2
) g =: b +ia g= b -ia

2

h2=A2/4 + q,2 g2 = A+ i2q, t = A - i2q,.

(2.7)

(2.8)

(2.9)

(2.10)

This latter form (2.9) is well suited for the differentiations to follow.
Possible static solutions, As:F 0 can be found from the simple case of eqn (2.6), where q, = 0

and the natural frequencies Ulo of the unloaded column follow from eqn (2.6) with A =: 0, i.e.

y!(Ulo3)[1 +cosh (y!(Ulo» cos (y!(Ulo))]

+(IlUlo2 - K)[sinh (y!(Ulo» cos (y!(Ulo» - cosh (y!(Ulo» sin (y!(Ulo))] == O. (2.12)
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3. SOLUTION PROCEDURE AND RESULTS

The complex transcendental eqn (2.6) is solved with respect to the complex q, for given real
load A,

q, ::::: q,(A) (3.1)

and this solution is easily obtained using the Newton-Raphson method. Thus we apply the
rapidly converging iteration procedure

(3.2)

Note that, due to the conjugate solutions to eqn (2.1) of the constant q,\ we may limit q, to
non-negative real as well as imaginary parts.

From eqns (2.6)-(2.10) we find D.4> ::::: BD/Bq,

D.4> ::::: 4q,f! +2p,q,f3 +Ctfl.4> +CJ2.4> + c3f3.4>

fl.4>::::: -i~(sin(g)/g-sin(g)/g)

f2.4> ::::: i~ (cos (g) - cos (g)) +~ q, (sin (g)/g +sin (g)/g)

h.4>::::: i(g sin(g)- g sin(g))(h-1
- hq,-2)

- hq,-I{g-!(sin(g)- g cos (g)) +g-l(sin(g)- g cos (g))}.

(3.3)

A small FORTRAN program with complex variables of less than 100 statements is able to solve a
specific problem, q, ::::: q,(A), for given 1/, p" and K within a CPU time of less than one second.
Plotting with a standard precedure of interactive computer graphics produces the results
presented in what follows.

Let us study the results of Fig. 2 in more detail. These results correspond to different follower
parameters 1/, keeping p, ::::: K ::::: O. The case of 1/ ::::: 0.3 shows stable motion (see eqn (1.14), (1.15))
for A< As::::: 4.06 (v'(As)::::: arc cos (1//(1/ -1)), and then unstable divergence for A> As with
increasing instability (0: increases with A). Now, for 1/ ::::: 0.4, the picture changes drastically. We
still have stable motion for A< As! ::::: 5.29, and then unstable divergence, but only within a definite
domain As! < A< AS2 ::::: 15.86. The instability in this domain is bounded by 0: :s 3.3. Stable motion is
again the result in the domain AS2 < A< AFO ::::: 16.40, and in the domain AFO < A< AF~ ::::: 17.9, flutter
instability mayor may not occur, depending upon the actual damping 13.

The function AF ::::: AF(I3) is shown in the upper figure. For A> AF~ flutter instability occur
independent of damping. A sequence of stable-unstable domains as discussed here for 1/ ::::: 0.4
results for follower parameters in the interval 0.354 < 1] < 0.5. For 1/ ::::: 0.5 the domain of unstable
divergence degenerates to a point ASI ::::: AS2 ::::: 7r

2
• In the interval 0.5 < 1/ < 1.0 the results are stable

motion for A< AFO, then, in a domain AFO < A< AF~, possible flutter instability depending upon
damping, and for A> AF~, flutter instability even when 13 ::::: 00. Finally, for 1/ > 1.0, we get unstable
divergence in tension, i.e. for A< As ::::: arcosh (1//(1/ - 1»; then, for A> As, the picture in general
agrees with the above cases for 0.5 < 1/ < 1.0.

The next results in Fig. 3 correspond to different values for mass parameter p" keeping 1/ ::::: 1,
K ::::: O. The general behaviour is stable motion for A< AFo, then possible flutter instability for
AFO < A< AF~, and, definitively, flutter for A> AF~. As seen from eqn (2.11), p, has no influence on
static solutions A, q, ::::: As, 0, and additional mass therefore cannot force divergence to occur for
0.5 < 1/ < 1.0, but with increasing p" the first natural frequency simply approaches zero. Note,
that AFO decreases when adding end mass up to a given amount, but then increases again. This will
be further discussed in Section 5. Note also in the upper figure that, for 13 > about 10, AF ::::: AF ( 1/) has
changed, now being monotonically increasing.

Corresponding to different values of spring parameter K, keeping 1/ ::::: 1, p, ::::: 0, we get the
results of Fig. 4. Three different intervals of K are to be considered. For 0 < K < 34.8, the general
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Fig. 2. For various values of the follower parameter '7/ without end mass and end spring (It "" I( '" 0) the lower
tlguret shows the first two natural frequencies Cd and the degree of instability a as a function of the force A.
assuming no damping (when {l# 0the results are given by eqns (1.141. (US)). The upper figure shows the onset

of flutter AI' as a function of the external damping p.

10 20 ~

Fig. J. For various values of concentrated end mass It without end spring (I>: =0), and with a ~tially
follower force ('I '" 1) the lower figure shows the first two natural frequencies IJ) as II function of the force A.
assuming no damping (when ff# 0tbe results are given by eqns (1.14), (1.15)). The upper figure shows the onset

of lIutter A" as a function of the external damping (3.

tTlte results of the Iirst quadrant may also be found in tbe early paper[6J. recently pointed out in Ref. {4}.
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Fig. 4. Forvarious valuesofthespringstiffness K withoutend mass (JL =0),andwithatangentiallyfollower force
(7/ = \) the lower figuret shows the first two natural frequencies wand the degree of instability a as afunction of
the force A, assuming no damping (when f3¢ 0 the results are given by eqns (1.14), (1.15». The upper figure

shows the onset of ftutter Af" as a function of the external damping f3.

picture is identical with K = 0 in the sense, that the values of AFo, AF~ just increase with K. For
34.8 < K < - 50 we have a domain of unstable divergence As) < A < AS2 before reaching AFo, and
in the domain AS2 < A< AFo, stable motion result. Finally for K > - 50, the only interesting point
is As" which separates stability from unstable divergence. The values of As may be determined
from eqn (2.11). We note for K = 75, that unstable divergence may change to flutter with
increasing load.

Taken as a whole, the results of Figs. 2-4 confirm and extend the results of the references. In
addition, the curves clearly show the feature mentioned in the introduction. The common point,
at which the natural frequency is independent of the concentrated mass, the support stiffness and
of the follower angle of the force, is given by

Ae , We = 16.05246,7.05525. (3.4)

The existence of such points for higher order pairs of eigenfrequencies is evident as well. In the
section to follow we shall prove this fact.

4. INDEPENDENCE OF BOUNDARY CONDITIONS

From the first three boundary conditions (2.2) it follows that the eigenfunction is

y(x, A, 4J) = y(x, a, b) = cosh (ax)-cos (bx) + [a sin(bx)-b sinh (ax)]Nf5' (4.1)
where

f4(A, 4J) =Ma, b) = a2 cosh (a) +b2 cos (b),

MA, 4J) = Ma, b) = ab [a sinh (a)+ b sin (b)].

tThis result may also be found in a just published paper[14].

(4.2)
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Note that the eigenfunction is explicitly independent of the parameters TJ, fJ- and K. Note also that
cases of /4 = /s = 0 need further investigation.

Now, to prove the existence of Ae , We, we primarily define ae, be by

ae, be both real, sin (be) :::; 0

ae cosh (ae) = be, be cos (be) =- ae. (4.3)

It then follows directly by inserting in eqns (2.8) and (4.2) that

(4.4)

This means that the condition (2.6) is fulfilled independently of TJ, fJ- and K. Further, it means that
a more detailed analysis of the eigenfunction (4.1) is necessary. That there exists an infinite
number of discrete points ae, be that satisfy (4.3) is illustrated by the graphical display in Fig. 5.

b

o cosh 101 = b

15",. -'----------,1;-2"",

~'rT+------+-_
bcos(b}=-o

!'fT sin(b)<O

o3.01.5

~'fTt---7f--__

O+-=-~---~--o

Fig. 5. Graphical solution of eqn (4.3).

Let us now concentrate on the eigenfunctions at the characteristic point. As /4(Ae , We) =
/s(Ae, We) = 0 we have to perform a limit analysis in order to determine the eigenfunction (4.1). By
the rule of I'Hospital we obtain

(4.5)

the only unknown quantity being db/da. We shall determine this quantity for different path
through Ae , We, specified by 9, where tan 9 =dw/dA. Using eqn (2.5) with W= f/J, we get

(b da +a db)
tan 9 = 2(b db - ada)' (4.6)

which gives

db 2a tan 9 +b
da = 2b tan 9 - a . (4.7)

From eqns (4.5), (4.7) and (4.2) we can then determine (f41/s)c as a function of 9, which is shown in
Fig. 6.

This result shows that the eigenfunction (4.1) at the common characteristic point Ae , We can be
any linear combination of (cosh (aeX) - cos (bex» and (ae sin (bex) - (be sinh (acx», which
functions are plotted in Fig. 7 together with the cases of (f4//S)c = - 0.23 and = 0.5 that
correspond to 9 = 0 and 7T/2, respectively.

5. ONSET OF FLUTTER AND MINIMUM NATURAL FREQUENCY

In this section we want to study directly the influence of the boundary parameters TJ, fJ- and K
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Fig. 6. Constant of'the eigenmode at Ac , We as a function of the path (tan 8 = dwldA).

Fig. 7. Nonned eigenmodes at Ac• We corresponding to different characteristic curves through this point.

on the load AFO at which flutter occurs if we have no damping. However, we must remember that
domains of instability may be actual for A< AFO• Mathematically, the onset of flutter is
characterized by

(5.1)

Applying the Newton-Raphson method with A as well as q, being the unknowns, we find the
solutions to this problem, i.e.

(5.2)

and thus directly find AFO' q,FO as a function of the parameters 1/, IL and K. In the formulation with
the quantities g, g we see from eqns (2.7) and (2.9) that even the partial derivatives of the second
order are not too complicated. As an example we find

(5.3)

The results are shown in Figs. 8-10. For four cases of IL, K the results AFO, WFO(1/) are given in Fig.
8. Note that (AFO)min = Ac independent of IL and K, but appears at values 1/ depending on IL, K. Also
the value 1/ below which flutter does not exist depends on IL, K.

Then, for four cases of 1/ with K = 0 the results AFO, WFo(IL) are given in Fig. 9. Here we now
find (AFO)min = Ac independent of 1/ but appearing at values IL depending on 1/. The curve
corresponding to 1/ = 1.0 comprises a modest refinement over results published earlier in [5] and
[2]. Finally for four cases of 1/ with IL = 0, the results AFO, WFO(K) are given in Fig. 10.

The minimum value of the first natural frequency Wmin within a load range Amin < A< Amax is an
important quantity that answers the question of latent instability (Wmin = 0 gives divergence). To
locate Wmin we must solve

(5.4)
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Fig. 8, The onset of Butter Apo• lllpo with no damping (fJ = 0) as a function of the follower parameter ",.

Fig. 9. The onset of Butter as a function of the end mass /10.

Fig. 10. The onset of Butter as a function of the end spring /c.

Fig. 11. The minimum natural frequency (lImln (resp. the maximum degree of instability am~) as a function of
the end spring K together with the force Aat which these extremal values appear.

Fig. 12. The minimum natural frequency (lim'. (resp. the maximum degree of instability a~.) as a function of
the follower parameter '" together with the force Aat which the extremal values appear.
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which is done analogously to the procedure (5.2). Results are shown in Figs. 11 and 12.
Figure 11 shows that we have, in fact, solved optimum design problems defined as follows.

Assume an active range of force A< AFO' and design the support stiffness K to maximize the
minimum first natural frequency. Note that the "design" K depends on 1'/ (p. = 0), but the result
(Wmin)max = We is independent of 1'/. Parallel to this, Fig. 12 shows, for K = P. = 0, that
Wm;n = W(A = 0) is obtainable with a specific follower angle of 1'/ =0.84.

CONCLUSION

To answer the question of stability for a non-conservative problem, it is generally necessary
to obtain the characteristic lines of instability in the load/frequency coordinate system.
Furthermore, a good answer includes the sensitivities to changes in the variables of the problem
such as boundary conditions. This means that parametric studies are necessary.

The study of the extended cantilever follower force problem with three boundary parameters
does indeed give additional insight into the problem, besides proving the necessity of a dynamic
formulation. First of all the existence of a force for which the natural frequency is independent of
the boundary parameters is clearly demonstrated. This feature must be common to problems of
similar kind.

The Newton-Raphson method is shown to be a very effective procedure for solving different
statements of the problem without modelling to finite degree of freedom.
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